RUQRZ hamradio
TOP недели
Популярные статьи


Ремонт электроники. Как найти неисправность, с чего начать?


Электроника сопровождает современного человека повсеместно: на работе, дома, в автомобиле. Работая на производстве, и неважно, в какой конкретно сфере, часто приходится ремонтировать что-то электронное. Условимся это «что-то» называть «прибор». Это такой абстрактный собирательный образ. Сегодня поговорим о всевозможных премудростях ремонта, освоив которые, вы сможете починить практически любой электронный «прибор», вне зависимости от его конструкции, принципа работы и области применения.

С чего начать

Невелика премудрость перепаять детальку, а вот найти дефектный элемент и есть главная задача в ремонте. Начинать следует с определения типа неисправности, так как от этого зависит, с чего начинать ремонт.

Типов таких три:
1. прибор не работает вообще — не светятся индикаторы, ничто не движется, ничто не гудит, нет никаких откликов на управление;
2. не работает какая-либо часть прибора, то есть не выполняется часть его функций, но хотя проблески жизни в нём всё же видны;
3. прибор в основном работает исправно, но иногда делает так называемые сбои. Назвать такой прибор сломанным пока нельзя, но всё же что-то ему мешает работать нормально. Ремонт в этом случае как раз и заключается в поиске этой помехи. Считается, что это самый сложный ремонт.
Разберём примеры ремонта каждого из трёх типов неисправностей.

Ремонт первой категории
Начнём с самой простой — поломка первого типа, это когда прибор совсем мёртвый. Любой догадается, что начинать нужно с питания. Все приборы, живущие в своём мире машин, обязательно потребляют энергию в том или ином виде. И если прибор наш совсем не шевелится, то вероятность отсутствия этой самой энергии весьма высока. Небольшое отступление. При поиске неисправности в нашем приборе речь часто будет идти именно о «вероятности». Ремонт всегда начинается с процесса определения возможных точек влияния на неисправность прибора и оценки величины вероятности причастности каждой такой точки к данному конкретному дефекту, с последующим превращением этой вероятности в факт. При этом сделать правильную, то есть с самой высокой степенью вероятности оценку влияния какого-либо блока или узла на проблемы прибора поможет самое полное знание устройства прибора, алгоритма его работы, физических законов, на которых основана работа прибора, умение логически мыслить и, конечно же, его величество опыт. Одним из самых эффективных методов ведения ремонта является так называемый метод исключения. Из всего списка всех подозреваемых в причастности к дефекту прибора блоков и узлов, с той или иной степенью вероятности, необходимо последовательно исключать невиновных.

Начинать поиск надо соответственно с тех блоков, вероятность которых может быть виновниками этой неисправности самая высокая. Отсюда и выходит, что чем точнее определена эта самая степень вероятности, тем меньше времени будет затрачено на ремонт. В современных «приборах» внутренние узлы сильно интегрированы между собой, и связей очень много. Поэтому количество точек влияния зачастую бывает чрезвычайно велико. Но и ваш опыт растёт, и со временем вы будете выявлять «вредителя» максимум с двух-трёх попыток.

Например, есть предположение, что с высокой вероятностью виноват в болезни прибора блок «X». Тогда нужно провести ряд проверок, замеров, экспериментов, которые бы подтвердили либо опровергли это предположение. Если после таких экспериментов останутся хоть самые малые сомнения в непричастности блока к «преступному» влиянию на прибор, то исключать полностью этот блок из числа подозреваемых нельзя. Нужно искать такой способ проверки алиби подозреваемого, чтобы на все 100% быть уверенным в его невиновности. Это очень важно в методе исключения. А самый надёжный способ такой проверки подозреваемого — это замена блока на заведомо исправный.

Вернёмся всё же к нашему «больному», у которого мы предположили неисправность питания. С чего начать в этом случае? А как и во всех других случаях — с полного внешнего и внутреннего осмотра «больного». Никогда не пренебрегайте этой процедурой, даже когда уверены в том, что знаете точное местоположение поломки. Осматривайте прибор всегда полностью и очень внимательно, не торопясь. Нередко во время осмотра можно найти дефекты, не влияющие напрямую на искомую неисправность, но которые могут вызвать поломку в будущем. Ищите подгоревшие электроэлементы, вздувшиеся конденсаторы и прочие подозрительно выглядящие элементы.

Если внешний и внутренний осмотр не принёс никаких результатов, тогда берите в руки мультиметр и приступайте к работе. Надеюсь, про проверку наличия напряжения сети и про предохранители напоминать не надо. А вот о блоках питания немного поговорим. В первую очередь, проверяйте высокоэнергетические элементы блока питания (БП): выходные транзисторы, тиристоры, диоды, силовые микросхемы. Потом можно начать грешить на оставшиеся полупроводники, электролитические конденсаторы и, в последнюю очередь, на остальные пассивные электроэлементы. Вообще величина вероятности выхода из строя элемента зависит от его энергетической насыщенности. Чем большую энергию использует электроэлемент для своего функционирования, тем больше вероятность его поломки.

Если механические узлы изнашивает трение, то электрические — ток. Чем больше ток, тем больше нагрев элемента, а нагревание/остывание изнашивает любые материалы не хуже трения. Колебания температуры приводят к деформации материала электроэлементов на микроуровне из-за температурного расширения. Такие переменные температурные нагрузки и являются основной причиной так называемого эффекта усталости материала при эксплуатации электроэлементов. Это необходимо учитывать при определении очерёдности проверки элементов.

Не забывайте проверять БП па предмет пульсаций выходных напряжений, либо каких-то иных помех на шинах питания. Хоть и нечасто, но и такие дефекты бывают причиной неработоспособности прибора. Проверьте, доходит ли реально питание до всех потребителей. Может, из-за проблем в разъёме/кабеле/проводе эта «пища» не доходит до них? БП будет исправен, а энергии-то в блоках прибора всё одно нет.

Ещё бывает, что неисправность таится в самой нагрузке — короткое замыкание (КЗ) там штука нередкая. При этом в некоторых «экономных» БП нет защиты по току и, соответственно, нет такой индикации. Поэтому версию короткого замыкания в нагрузке тоже следует проверить.

Ремонт второй категории

Теперь поломка второго типа. Хотя здесь также всё следует начинать всё с того же внешне-внутреннего осмотра, тут таится гораздо большее разнообразие аспектов, па которые следует обратить внимание. — Самое главное — успеть запомнить (записать) всю картину состояния звуковой, световой, цифровой индикации прибора, кодов ошибок на мониторе, дисплее, положение аварийных сигнализаторов, флажков, блинкеров на момент аварии. Причём обязательно до того, как произойдёт её сброс, квитирование, отключение питания! Это очень важно! Упустить какую-нибудь важную информацию — значит непременно увеличить время, затраченное на ремонт. Осмотрите всю имеющуюся индикацию — и аварийную, и рабочую, и запомните все показания. Откройте шкафы управления и запомните (запишите) состояние внутренней индикации при её наличии. Пошатайте платы, установленные на материнке, в корпусе прибора шлейфы, блоки. Может, неисправность исчезнет. И обязательно прочистите радиаторы охлаждения.

Иногда имеет смысл проверить напряжение на каком-нибудь подозрительном индикаторе, особенно если им является лампа накаливания. Внимательно прочтите показания монитора (дисплея), при его наличии. Расшифруйте коды ошибок. Посмотрите таблицы входных и выходных сигналов на момент аварии, запишите их состояние. Если прибор обладает функцией записи происходящих с ним процессов, не забудьте прочесть и проанализировать такой журнал событий.

• Не стесняйтесь — понюхайте прибор. Нет ли характерного запаха горелой изоляции? Особое внимание уделите изделиям из карболита и других реактивных пластмасс. Нечасто, но бывает, что их пробивает, и пробой этот порою очень плохо видно, особенно если изолятор чёрного цвета. Из-за своих реактивных свойств эти пластмассы не коробит при сильном нагреве, что также затрудняет обнаружение пробитой изоляции.

• Посмотрите, нет ли потемневшей изоляции обмоток реле, пускателей, электродвигателей. Нет ли потемневших резисторов и изменивших нормальный цвет и форму других электрорадиоэлементов.

• Нет ли вздувшихся или «стрельнувших» конденсаторов.

• Проверьте, нет ли в приборе воды, грязи, посторонних предметов.

• Посмотрите, нет ли перекоса разъёма, или блок/плата не до конца вставлены в своё место. Попробуйте вынуть и заново вставить их.

• Возможно, какой-либо переключатель на приборе стоит в не соответствующем положении. Заела кнопка, либо подвижные контакты у переключателя стали в промежуточном, не зафиксированном положении. Возможно пропал контакт в каком-нибудь тумблере, переключателе, потенциометре. Потрогайте их все (при обесточенном приборе), пошевелите, повключайте. Лишним это не будет.

• Проверьте на предмет заклинивания механические части исполнительных органов — проверните роторы электродвигателей, шаговых двигателей. Подвигайте по необходимости другие механизмы. Сравните прилагаемое при этом усилие с другими такими же рабочими устройствами, если конечно есть такая возможность.

• Осмотрите внутренности прибора в работающем состоянии — возможно увидите сильное искрение в контактах реле, пускателей, переключателей, что будет свидетельствовать о чрезмерно высокой величине тока в этой цепи. А это уже хорошая зацепка для поиска неисправности. Часто виной такой поломки бывает дефект какого-либо датчика. Эти посредники между внешним миром и прибором, которому они служат, обычно вынесены далеко за порубежье самого корпуса прибора. И при этом работают они обычно в более агрессивной среде, чем внутренне части прибора, которые так или иначе, но защищены от внешнего воздействия. Поэтому все датчики требуют повышенного внимания к себе. Проверьте их работоспособность и не поленитесь почистить от загрязнения. Концевые выключатели, различные блокирующие контакты и прочие датчики с гальваническими контактами — являются подозреваемыми с высоким приоритетом. Да и вообще любой «сухой контакт» т.е. не пропаянный, должен стать элементом пристального внимания.

И ещё момент — если прибор прослужил уже немало времени, то следует обратить внимание на элементы, наиболее подверженные какому-либо износу или изменению своих параметров с течением времени. Например: механические узлы и детали; элементы, подвергающиеся во время работы повышенному нагреву или иному агрессивному воздействию; электролитические конденсаторы, некоторые виды которых склонны терять ёмкость со временем из-за высыхания электролита; все контактные соединения; органы управления прибором.

Практически все виды «сухих» контактов с течением времени теряют свою надёжность. Особое внимание следует уделить контактам с серебряным покрытием. Если прибор долгое время проработал без технического обслуживания, рекомендую перед тем, как приступать к углублённому поиску неисправности, сделать профилактику контактам — осветлить их обычным ластиком и протереть спиртом. Внимание! Никогда не пользуйся абразивными шкурками для чистки посеребрённых и позолоченных контактов. Это верная смерть разъёму. Покрытие серебром или золотом делается всегда очень тонким слоем, и стереть абразивом его до меди очень легко. Полезно провести процедуру самоочистки контактов розеточной части разъёма, на профессиональном сленге «мамы»: соедините-разъедините разъём несколько раз, от трения пружинящие контакты немного очищаются. Ещё советую, работая с любыми контактными соединениями, не трогать их руками — масляные пятна от пальцев негативно влияют на надёжность электрического контакта. Чистота залог надёжной работы контакта.

Первейшее дело — проверить срабатывание какой-либо блокировки, защиты в начале ремонта. (В любой нормальной технической документации на прибор есть глава с подробным описанием применяемых в нём блокировок.)

После осмотра и проверки питания прикиньте навскидку — что наиболее вероятно сломалось в приборе, и проверьте эти версии. Сразу в дебри прибора не стоит лезть. Сначала проверьте всю периферию, особенно исправность исполнительных органов — возможно сломался не сам прибор, а какой-либо механизм, управляемый им. Вообще рекомендуется изучить, пусть и не до тонкостей, весь производственный процесс, участником которого является подопечный прибор. Когда очевидные версии исчерпаны — вот тогда садитесь за свой рабочий стол, заваривайте чайку, раскладывайте схемы и прочую документацию на прибор и «рожайте» новые идеи. Думайте, что ещё могло вызвать эту болезнь прибора.

Через некоторое время у вас должно «родиться» определённое количество новых версий. Тут рекомендую не спешить бежать проверять их. Сядьте где-нибудь в спокойной обстановке и подумайте над этими версиями па предмет величины вероятности каждой из них. Тренируйте себя в деле оценки таких вероятностей, а когда накопится опыт в подобной селекции — станете делать ремонт гораздо быстрее.

Самый результативный и надёжный способ проверки подозреваемого блока, узла прибора на работоспособность, как уже говорилось, это замена его на заведомо исправный. Не забывайте при этом внимательно проверять блоки на предмет их полной идентичности. Если будете подключать тестируемый блок к работающему исправно прибору, то по возможности подстрахуйтесь — проверьте блок на предмет завышенных выходных напряжений, короткое замыкание по питанию и в силовой части, и прочие возможные неисправности, которые могут вывести из строя рабочий прибор. Бывает и обратное: подключаешь донорскую рабочую плату в сломанный прибор, проверяешь, что хотел, а когда её возвращаешь назад — она оказывается уже неработоспособной. Такое бывает нечасто, но всё же имейте в виду этот момент.

Если таким образом удалось найти неисправный блок, то дальше локализовать поиск неисправности до конкретного электроэлемента поможет так называемый «сигнатурный анализ». Так называют метод, при котором ремонтник проводит интеллектуальный анализ всех сигналов, коими «живёт» испытуемый узел. Подключите исследуемый блок, узел, плату к прибору с помощью специальных удлинителей-переходников (такие обычно поставляются в комплекте с прибором), чтобы был свободный доступ ко всем электроэлементам. Разложите рядом схему, измерительные приборы и включите питание. Теперь сверьте сигналы в контрольных точках на плате с напряжениями, осциллограммами на схеме (в документации). Если схема и документация не блещут такими подробностями, тут уж напрягайте мозги. Хорошие знания по схемотехнике здесь будут весьма кстати.

Если появились какие-то сомнения, то можно «повесить» на переходник исправную образцовую плату с рабочего прибора и сравнить сигналы. Сверьте со схемой (с документацией) все возможные сигналы, напряжения, осциллограммы. Если найдено отклонение какого-либо сигнала от нормы, не спешите делать вывод о неисправности именно этого электроэлемента. Он может быть не причиной, а всего лишь следствием другого нештатного сигнала, который вынудил этот элемент выдать ложный сигнал. Во время ремонта старайтесь сужать круг поиска, максимально локализовать неисправность. Работая с подозреваемым узлом/блоком, придумывайте такие испытания и измерения для него, которые бы исключили (или подтвердили) причастность этого узла/блока к данной неисправности наверняка! Семь раз подумайте, когда исключаете блок из числа неблагонадёжных. Все сомнения в этом деле должны быть развеяны явными уликами.

Эксперименты делайте всегда осмысленно, метод «научного тыка» не наш метод. Дескать, дай-ка я вот этот провод сюда ткну и посмотрю, что будет. Никогда не уподобляйтесь таким «ремонтёрам». Последствия всякого эксперимента обязательно должны быть продуманы и нести полезную информацию. Бессмысленные же эксперименты — пустая трата времени, и к тому же ещё поломать можно что- нибудь. Развивайте в себе способность логически мыслить, стремитесь видеть чёткие причинно-следственные связи в работе устройства. Даже в работе сломанного прибора есть своя логика, всему есть объяснение. Сможете понять и объяснить нестандартное поведение прибора — найдёте его дефект. В деле ремонта очень важно самым чётким образом представлять себе алгоритм работы прибора. Если у вас есть пробелы в этой области, читайте документацию, спрашивайте всех, кто хоть что-то знает об интересующем вопросе. И не бойтесь спрашивать, вопреки распространённому мнению, это не убавляет авторитет в глазах коллег, а наоборот, умные люди всегда это оценят положительно. Помнить наизусть схему прибора абсолютно ненужно, для этого бумагу придумали. А вот алгоритм его работы надо знать «назубок». И вот вы «трясёте» прибор уже который день. Изучили его так, что кажется дальше некуда. И уже неоднократно пытали все подозреваемые блоки/узлы. Испробованы даже казалось бы самые фантастические варианты, а неисправность так и не найдена. Вы уже начинаете понемногу нервничать, может даже паниковать. Поздравляю! Вы достигли апогея в данном ремонте. И тут поможет только… отдых! Вы просто устали, нужно отвлечься от работы. У вас, как говорят опытные люди, «глаз замылился». Так что бросайте работу и полностью отключите своё внимание от подопечного прибора. Можно заняться другой работой, или вовсе ничем не заниматься. Но о приборе нужно забыть. А вот когда отдохнёте, то сами почувствуете желание продолжить битву. И как часто бывает, после такого перерыва вы вдруг увидите такое простое решение проблемы, что удивитесь несказанно!

Ремонт третьей категории

А вот с неисправностью третьего типа всё гораздо сложнее. Так как сбои в работе прибора носят обычно случайный характер, то для того чтобы поймать момент проявления сбоя, времени часто требуется очень много. Особенности внешнего осмотра в этом случае заключаются совмещении поиска возможной причины сбоя с проведением профилактических работ. Вот для ориентира перечень некоторых возможных причин появления сбоев.

• Плохой контакт (в первую очередь!). Почистите разъёмы все сразу во всём приборе и внимательно осматривайте при этом контакты.

• Перегрев (как и переохлаждение) всего прибора, вызванный повышенной (пониженной) температурой окружающей среды, либо вызванный длительной работой с высокой нагрузкой.

• Пыль на платах, узлах, блоках.

• Загрязнение радиаторов охлаждения. Перегрев полупроводниковых элементов, которые они охлаждают, тоже может быть причиной сбоев.

• Помехи в сети питания. Если фильтр питания отсутствует или вышел из строя, либо его фильтрующих свойств недостаточно для данных условий эксплуатации прибора, то сбои в его работе будут нередкими гостями. Попробуйте связать сбои с включением какой-либо нагрузки в той же электросети, от которой питается прибор, и тем самым найти виновника помехи. Возможно именно в соседнем приборе неисправен сетевой фильтр, либо ещё какая другая неисправность в нём, а не в ремонтируемом приборе. По возможности запитайте прибор на некоторое время от бесперебойника с хорошим встроенным сетевым фильтром. Сбои пропадут — ищите проблему в сети.

И здесь, как и в предыдущем случае, самым эффективным способом ремонта является метод замены блоков на заведомо исправные. Меняя блоки и узлы между одинаковыми приборами, внимательно следите за их полной идентичностью. Обратите внимание на наличие персональных настроек в них — различные потенциометры, настроенные контуры индуктивности, переключатели, джемперы, перемычки, программные вставки, ПЗУ с различными версиями прошивок. Если они имеются, то решение о замене принимайте, обдумав все возможные проблемы, которые могут возникнуть в связи с опасностью нарушения работы блока/узла и прибора в целом, из-за разницы в таких настройках. Если всё же имеется острая необходимость в такой замене, то делайте перенастройку блоков с обязательной записью предыдущего состояния — пригодится при возврате.

Бывает так, что заменены все составляющие прибор платы, блоки, узлы, а дефект остался. Значит, логично предположить, что неисправность засела в оставшейся периферии в жгутах проводов, внутри какого-либо разъёма проводок оторвался, может быть дефект кросс-платы. Иногда виноват бывает замятый контакт разъёма, например в боксе для плат. При работе с микропроцессорными системами иногда помогает многократный прогон тестовых программ. Их можно закольцевать или настроить на большое количество циклов. Причём лучше, если они будут именно специализированные тестовые, а не рабочие. Эти программы умеют фиксировать сбой и всю сопутствующую ему информацию. Если умеете, сами напишите такую тестовую программу, с ориентацией на конкретный сбой.

Бывает, что периодичность проявления сбоя имеет некую закономерность. Если сбой можно связать по времени с исполнением какого-либо конкретного процесса в приборе, тогда вам повезло. Это очень хорошая зацепка для анализа. Поэтому всегда внимательно наблюдайте за сбоями прибора, замечайте все обстоятельства, при которых они проявляются, и старайтесь связать их с исполнением какой-либо функции прибора. Длительное наблюдение за сбоящим прибором в этом случае может дать ключ к разгадке тайны сбоя. Если найти зависимость появления сбоя от, например, перегрева, повышения/ понижения напряжения питания, от вибрационного воздействия, это даст некоторое представление о характере неисправности. А дальше — «ищущий да обрящет».

Способ контрольной замены почти всегда приносит положительные результаты. Но в найденном таким образом блоке может быть множество микросхем и других элементов. А значит, есть возможность восстановить работу блока заменой лишь одной, недорогой детальки. Как в этом случае локализовать поиск дальше? Тут тоже не всё потеряно, существуют несколько интересных приёмов. Сигнатурным анализом поймать сбой практически нереально. Поэтому попробуем использовать некоторые нестандартные методы. Нужно спровоцировать блок на сбой при определённом локальном воздействии на пего и при этом надо, чтобы момент проявления сбоя можно было привязать к конкретной детали блока. Вешайте блок на переходник/удлинитель и начинайте его мучить. Если подозреваете в плате микротрещину, можно попробовать закрепить плату на каком-нибудь жёстком основании и деформировать только малые части её площади (углы, края) и гнуть их в разных плоскостях. И наблюдайте при этом за работой прибора — ловите сбой. Можно попробовать постучать ручкой отвёртки по частям платы. Определились с участком платы — берите линзу и внимательно высматривайте трещинку. Нечасто, но иногда всё-таки удаётся обнаружить дефект, и, кстати, при этом далеко не всегда виновной оказывается микротрещина. Гораздо чаще находятся дефекты пайки. Поэтому рекомендуется не только гнуть саму плату, но и шевелить все её электроэлементы, внимательно наблюдая за их паяным соединением. Если подозрительных элементов немного, можно просто сразу все пропаять, чтобы в будущем больше не было проблем с этим блоком.

А вот если в причине сбоя подозревается какой-либо полупроводниковый элемент платы, найти его будет непросто. Но и тут тоже можно словчить, есть такой несколько радикальный способ спровоцировать сбой: в рабочем состоянии нагревайте паяльником по очереди каждый электроэлемент и следите за поведением прибора. К металлическим частям электроэлементов паяльник нужно прикладывать через тонкую пластинку слюды. Греть примерно градусов до 100-120, хотя иногда и больше требуется. При этом, конечно, есть определённая доля вероятности дополнительно испортить какой-ни- будь «невинный» элемент на плате, но стоит ли рисковать в этом случае, это уже решать вам. Можно попробовать наоборот, охлаждать льдинкой. Тоже не часто, но всё же можно и таким способом попробовать, как у нас говорят, — «выковырять клопа». Если уж сильно припекло, и при наличии возможности, конечно, то меняйте все подряд полупроводники на плате. Очерёдность замены — по нисходящей эиергоиасыщеипости. Меняйте блоками по нескольку штук, периодически проверяя работоспособность блока на отсутствие сбоев. Попробуйте хорошенько пропаять все подряд электроэлементы на плате, иногда только уже одна эта процедура возвращает прибор к здоровой жизни. Вообще с неисправностью такого типа никогда нельзя гарантировать полное выздоровление прибора. Часто бывает так, что вы во время поиска неисправности шевельнули случайно какой-то элемент, у которого был слабый контакт. При этом неисправность исчезла, но скорее всего этот контакт опять себя проявит со временем. Ремонт редко проявляющегося сбоя — занятие неблагодарное, времени и усилий требует много, а гарантии, что прибор будет обязательно отремонтирован, нет никакой. Поэтому многие мастера часто отказываются браться за ремонт таких капризных приборов, и, честно говоря, я их за это не виню.

С. Boлчкoв



Текущее состояние магнитных бурь

Поиск по сайту


Подписка на новости
Архив статей

Яндекс.Метрика